Further Calculus IV Cheat Sheet

AQA A Level Further Maths: Core

Differentiating Inverse Trigonometric Functions (A Level Only)

To find the derivatives of inverse trigonometric functions, implicit differentiation is used. In order for a function to have an inverse, it must have a 1 -to-1 mapping between the domain and the range. For example consider $\sin (x)$, its range is $[-1,1]$ and so its inverse, $\sin ^{-1}(x)$, is defined for $x \in[-1,1]$.
The graph of $\mathrm{y}=\sin ^{-1}(x)$ is shown to the right. Although this function is defined at $x= \pm 1$, the gradient at these points is infinite, and therefore undefined. Thus, the resitrction $|x|<1$ is taken when finding the derivative of this function

Example 1: Given $|x|<1$, find $\frac{d y}{d x}$ for $y=\sin ^{-1}(x)$.

Apply the sine function to find x in terms of y. This is now differentiable via implicit differentiation.	$y=\sin ^{-1}(x) \Rightarrow \sin (y)=x$.
Differentiate this equation with respect to x. The aim is to have an expression for $\frac{d y}{d x}$ in terms of x.	Using the chain rule, $\cos (y) \frac{d y}{d x}=1$ $\Rightarrow \frac{d y}{d x}=\frac{1}{\cos (y)} .$
Use trigonometric identities to express $\cos (y)$ in terms of x. The range of $\sin ^{-1}(x)$ is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$, and since $\cos (y)$ is non-negative in this range, it is justified to take just the positive square root here. Looking at the graph of $\sin ^{-1}(x)$ also confirms that the gradient is only ever positive.	$\begin{aligned} \cos ^{2}(y) & =1-\sin ^{2}(y) \\ \Rightarrow \cos (y) & =\sqrt{1-\sin ^{2}(y)} . \end{aligned}$ It is given that $\sin (y)=x$, and so this expression becomes $\frac{d y}{d x}=\frac{1}{\sqrt{1-\sin ^{2}(y)}}=\frac{1}{\sqrt{1-x^{2}}}$

The derivatives of $\cos ^{-1}(x)$ and $\tan ^{-1}(x)$ are found in a similar way, giving:

$$
\frac{d}{d x}\left(\cos ^{-1}(x)\right)=-\frac{1}{\sqrt{1-x^{2}}},|x|<1 \quad \frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}} .
$$

These are given in the formula book. The derivative of $\tan ^{-1}(x)$ is defined for all x, since the range of $\tan (x)$ is infinite. These are given in the formula book. The derivative of $\tan ^{-1}(x)$ is defined for all x, since the range of
These results can also be used within examples which involve the product, chain and quotient rules.

Example 2: Find the derivative of $y=e^{6 x} \arctan (2 x)$

$$
\begin{aligned}
& \text { There are two functions multiplied } \\
& \text { together here, so the product rule } \\
& \text { must be used. Notethat arctan }(x) \\
& \text { is different ontation for tan } \\
& \text { The }(x) \text {. } \\
& \text { The chain rule is is sed to find the } \\
& \text { derivativ of arctan }(2 x) .2 x \text { is } \\
& \text { used in place of } x \text { in the result for } \\
& \text { its.corivative }
\end{aligned}
$$

Product rule: $\frac{d}{d x}(u v)=u^{\prime} v+v^{\prime} u . u=e^{6 x}, u^{\prime}=6 e^{6 x}$.
Using the chain rule $\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.$ with $f(x)=\arctan (x), g(x)=2 x$

$$
\begin{gathered}
v=\arctan (2 x), v^{\prime}=\frac{1 \cdot(2 x)^{\prime}}{1+(2 x)^{2}}=\frac{2}{1+4 x^{2}} \\
\therefore u^{\prime} v+v^{\prime} u=6 e^{6 x} \arctan (2 x)+\frac{2 e^{6 x}}{1+4 x^{2}} \\
\frac{d}{d x}\left(e^{6 x} \arctan (2 x)\right)=e^{6 x}\left(6 \arctan (2 x)+\frac{2}{1+4 x^{2}}\right)
\end{gathered}
$$

To the right is the graph of $y=\tan ^{-1}(x)$. The domain of this function is $(-\infty, \infty)$ since $\tan (x)$ takes o an infinite number of values, unlike $\sin (x)$ and $\cos (x)$. The range of this function is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, with the graph approaching each limit asymptotically. This is due to $\tan (x)$ being undefined at $\pm \frac{\pi}{2}$.

The graph of $y=\sin ^{-1}(x)$. This function has domain $[-1,1]$ and range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
 The graph of $y=\cos ^{-1}(x)$. This function
has domain $[-1,1]$ and range $[0, \pi]$

Using Inverse Trigonometric Functions in Integration (A Level Only)
The derivatives of $\sin ^{-1}(x)$ and $\tan ^{-1}(x)$ are used to evaluate integrals of the form $\int \frac{1}{\sqrt{x^{2}-x^{2}}} d x$ and $\int \frac{1}{a^{2}+x^{2}} d x$ respectively. The derivative for $\cos ^{-1}(x)$ does not offer any additional help here as it is the negative of the derivative of $\sin ^{-1}(x)$. The general results that are used are as follows:

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c,|x|>a \quad \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c
$$

where c is a constant of integration. These are given in the formula booklet. Alongside using these identities, question types may include proving the above results Example 3: Use the substitution $x=a \tan (u)$ to prove the result $\frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c$.

Differentiate the substitution with respect to u to find an expression for $d x$. This is then used to transform the integral. The derivative of $\tan (u)$ is given in the formula booklet.	$\begin{gathered} x=a \tan (u) \Rightarrow \frac{d x}{d u}=a \sec ^{2}(u) \\ \therefore d x=\mathrm{a} \sec ^{2}(u) d u . \end{gathered}$
Rearrange the integrand to express it in terms of u, using any necessary trigonometric identities.	$\frac{1}{a^{2}+x^{2}}=\frac{1}{a^{2}+a^{2} \tan ^{2}(u)}=\frac{1}{a^{2}} \cdot \frac{1}{1+\tan ^{2}(u)}$ Use the trigonometric identity $1+\tan ^{2}(u)=\sec ^{2}(u)$ $\therefore \frac{1}{a^{2}+x^{2}}=\frac{1}{a^{2}} \cdot \frac{1}{\sec ^{2}(u)}$
Combine both steps to complete the substitution. Then, evaluate the integral, not forgetting to add the constant of integration.	$\begin{gathered} \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a^{2}} \int \frac{1}{\sec ^{2}(u)} \cdot \operatorname{asec}^{2}(u) d u=\frac{1}{a} \int d u \\ =\frac{1}{a} u+c . \end{gathered}$
Finally, rewrite u in terms of x to reach the desired result.	$\begin{aligned} & x=\arctan (u) \Rightarrow u=\tan ^{-1}\left(\frac{x}{a}\right) \\ & \therefore \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c . \end{aligned}$

Note: the result for $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x$ is similarly proven.
To complete questions using these results, the integrand may need to be rearranged into the desired form
Example 4: Find

$\int \frac{1}{\sqrt{-x^{2}-2 x+35}} d x$	
Noting the square root, rearranging the denominator into the form $a^{2}-x^{2}$ will allow for the use of $\sin ^{-1}(x)$. Completing the square of this expression will lead to the desired format.	$\begin{gathered} -x^{2}-2 x+35=-\left(x^{2}+2 x-35\right) . \\ x^{2}+2 x-35=(x+1)^{2}-1-35=(x+1)^{2}-36 \\ \therefore-x^{2}-2 x+35=6^{2}-(x+1)^{2} \\ \therefore \int \frac{1}{\sqrt{-x^{2}-2 x+35}} d x=\int \frac{1}{\sqrt{6^{2}-(x+1)^{2}}} d x \end{gathered}$
The result can now be applied, with $a=6$, and replacing x^{2} with $(x+1)^{2}$, not forgetting the constant of integration.	$\int \frac{1}{\sqrt{6^{2}-(x+1)^{2}}} d x=\sin ^{-1}\left(\frac{x+1}{6}\right)+c$

