Further Calculus IV Cheat Sheet

Differentiating Inverse Trigonometric Functions (A Level Only) To find the derivatives of inverse trigonometric functions, implicit differentiation is used. In order for a function to have an inverse, it must have a 1-to-1 mapping between the domain and the range. For example consider sin(x), its range is [-1,1]and so its inverse, $\sin^{-1}(x)$, is defined for $x \in [-1,1]$. The graph of $y = \sin^{-1}(x)$ is shown to the right. Although this function is defined at $x = \pm 1$, the gradient at these points is infinite, and therefore undefined. Thus, the resitrction |x| < 1 is taken when finding the derivative of this function. **Example 1:** Given |x| < 1, find $\frac{dy}{dx}$ for $y = \sin^{-1}(x)$. $y = \sin^{-1}(x) \Rightarrow \sin(y) = x.$ Apply the sine function to find x in terms of y. This is now differentiable via implicit differentiation. Differentiate this equation with Using the chain rule, $\cos(y)\frac{dy}{dx} = 1$ respect to x. The aim is to have an The graph of $y = \sin^{-1}(x)$. This function expression for $\frac{dy}{dx}$ in terms of x. $\Rightarrow \frac{dy}{dx} = \frac{1}{\cos(y)}.$ has domain [-1,1] and range $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. $\cos^2(y) = 1 - \sin^2(y)$ $\Rightarrow \cos(y) = \sqrt{1 - \sin^2(y)}.$ Use trigonometric identities to express cos(y) in terms of x. The range of $\sin^{-1}(x)$ is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, It is given that sin(y) = x, and so this expression becomes $\frac{dy}{dx} = \frac{1}{\sqrt{1 - sin^2(y)}} = \frac{1}{\sqrt{1 - x^2}}$ and since cos(y) is non-negative in this range, it is justified to take just the positive square root here. Looking at the graph of $\sin^{-1}(x)$ also confirms that the gradient is only ever positive. The derivatives of $\cos^{-1}(x)$ and $\tan^{-1}(x)$ are found in a similar way, giving: $\frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1-x^2}}, |x| < 1 \qquad \qquad \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$

These are given in the formula book. The derivative of $\tan^{-1}(x)$ is defined for all x, since the range of $\tan(x)$ is infinite. These results can also be used within examples which involve the product, chain and quotient rules.

Example 2: Find the derivative of $y = e^{6x} \arctan(2x)$.

	There are two functions multiplied together here, so the product rule	Product rule: $\frac{d}{dx}(uv) = u'v + i$	$v'u. \ u = e^{6x}, \ u' = 6e^{6x}.$		
	must be used. Note that $\arctan(x)$ is different notation for $\tan^{-1}(x)$.	Using the chain rule $(f(g(x))' = f'(g(x))g'(x))$	x) with $f(x) = \arctan(x), g(x) = 2x$:		
	The chain rule is used to find the derivative of $\arctan(2x)$. $2x$ is used in place of x in the result for	$v = \arctan(2x), v' = \frac{1}{1}$	$\frac{(2x)'}{(2x)^2} = \frac{2}{1+4x^2}$		
	its derivative.	$\therefore u'v + v'u = 6e^{6x} \arctan u$	$\tan(2x) + \frac{2e^{6x}}{1+4x^2}$		
		$\therefore \frac{d}{dx}(e^{6x}\arctan(2x)) = e^{6x}\left(e^{6x}\arctan(2x)\right) = e^{6x}\left(e^{6x}\arctan(2x)\right) = e^{6x}\left(e^{6x}\arctan(2x)\right) = e^{6x}\left(e^{6x}\operatorname{arctan}(2x)\right) = e^{6x}\left(e^{6x}\operatorname{arctan}(2x$	$6\arctan(2x) + \frac{2}{1+4x^2} \bigg)$		
To the right is the graph of $y = \tan^{-1}(x)$. The domain of this function is $(-\infty, \infty)$ since $\tan(x)$ takes on an infinite number of values, unlike sin (x) and $\cos(x)$. The range of this function is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, with the graph approaching each limit asymptotically. This is due to $\tan(x)$ being undefined at $\pm \frac{\pi}{2}$.					
		_	-6 -4 -2 0	2	
			-2		

Using Inverse Trigonometric Functions in Integration (A Level Only)

The derivatives of $\sin^{-1}(x)$ and $\tan^{-1}(x)$ are used to evaluate integrals of the form $\int \frac{1}{\sqrt{a^2-x^2}} dx$ and $\int \frac{1}{a^2+x^2} dx$ respectively. The derivative for $\cos^{-1}(x)$ does not offer any additional help here as it is the negative of the derivative of $\sin^{-1}(x)$. The general results that are used are as follows:

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1}\left(\frac{x}{a}\right) + c, |x| > a$$

where c is a constant of integration. These are given in the formula booklet. Alongside using these identities, question types may include proving the above results.

Example 3: Use the substitution $x = a \tan(u)$ to prove the result $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$.

Differentiate the substitution with respect to u to find an expression for dx . This is then used to transform the integral. The derivative of tan (u) is given in the formula booklet.	
Rearrange the integrand to express it in terms of <i>u</i> , using any necessary trigonometric identities.	$\frac{1}{a^2+}$
Combine both steps to complete the substitution. Then, evaluate the integral, not forgetting to add the constant of integration.	$\int \frac{1}{a^2 + b}$
Finally, rewrite u in terms of x to reach the desired result.	

Note: the result for $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ is similarly proven.

To complete questions using these results, the integrand may need to be rearranged into the desired form

Example 4: Find -

integration.

 $\textcircled{\begin{time}{0.5ex}} \textcircled{\begin{time}{0.5ex}} \textcircled{\begin{time}{0.5ex}} \textcircled{\begin{time}{0.5ex}} \textcircled{\begin{time}{0.5ex}} \textcircled{\begin{time}{0.5ex}} \textcircled{\begin{time}{0.5ex}} \end{array} \end{array}$

Find -	
	$\int \frac{1}{\sqrt{-x^2 - 2x + 35}}$
Noting the square root, rearranging the denominator into the form $a^2 - x^2$ will allow for the use of $\sin^{-1}(x)$. Completing the square of this expression will lead to the	
desired format.	$x^2 + 2$
	∴ ∫ :
The result can now be applied, with $a = 6$, and replacing x^2 with $(x + 1)^2$, not forgetting the constant of	

www.pmt.education <a>D <a>

The graph of $y = \cos^{-1}(x)$. This function

has domain [-1,1] and range $[0,\pi]$.

$$\int \frac{1}{\sqrt{6^2 - (x+1)^2}} dx = \sin^{-1}\left(\frac{x+1}{6}\right) + c$$

$$\therefore \int \frac{1}{\sqrt{-x^2 - 2x + 35}} dx = \int \frac{1}{\sqrt{6^2 - (x+1)^2}} dx$$

$$\therefore \int \frac{1}{\sqrt{-x^2 - 2x + 35}} dx = \int \frac{1}{\sqrt{6^2 - (x+1)^2}} dx$$

$$\therefore -x^2 - 2x + 35 = 6^2 - (x+1)^2$$
$$\therefore \int \frac{1}{\sqrt{-x^2 - 2x + 35}} dx = \int \frac{1}{\sqrt{6^2 - (x+1)^2}} dx$$

$$\therefore -x^2 - 2x + 35 = 6^2 - (x+1)^2$$
$$\therefore \int \frac{1}{\sqrt{1 - (x+1)^2}} dx = \int \frac{1}{\sqrt{1 - (x+1)^2}} dx$$

$$\therefore -x^2 - 2x + 35 = 6^2 - (x + 1)^2$$

$$x^{2} + 2x - 35 = (x + 1)^{2} - 1 - 35 = (x + 1)^{2} - 36$$

 $-x^2 - 2x + 35 = -(x^2 + 2x - 35)$

$$\frac{1}{1} \frac{35}{25} d$$

Use the trigonometric identity

$$1 + \tan^{2}(u) = \sec^{2}(u).$$

$$\therefore \frac{1}{a^{2} + x^{2}} = \frac{1}{a^{2}} \cdot \frac{1}{\sec^{2}(u)}.$$

$$\frac{1}{a^{2}} \int \frac{1}{\sec^{2}(u)} \cdot a \sec^{2}(u) du = \frac{1}{a} \int du$$

$$= \frac{1}{a}u + c.$$

$$x = \arctan(u) \Rightarrow u = \tan^{-1}\left(\frac{x}{a}\right)$$

$$\therefore \int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + c.$$

$$\frac{1}{x^2} = \frac{1}{a^2 + a^2 \tan^2(u)} = \frac{1}{a^2} \cdot \frac{1}{1 + \tan^2(u)}$$

 $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$

 $x = a \tan(u) \Rightarrow \frac{dx}{du} = a \sec^2(u)$

$$u^2 + u^2 \tan^2(u) \quad u^2 = 1 +$$

Use the trigonometric identity

$$a^2 + a^2 \tan^2(u)$$
 a^2 1 + 1
Use the trigonometric identity

$$a^2 + a^2 \tan^2(u) = a^2 - 1 + U$$
se the trigonometric identity

Use the trigonometric identity
$$1 + \tan^2(w) = \tan^2(w)$$

Use the trigonometric identity

$$1 \pm \tan^2(y) = \sec^2(y)$$

$$\overline{a^2 + a^2 \tan^2(u)} = \overline{a^2} \cdot \overline{1 + u}$$

e the trigonometric identity

$$a^2 + a^2 \tan^2(u)$$
 a^2 1 +
Use the trigonometric identity

$$a^2 + a^2 \tan^2(u) = a^2 + 1 + 1$$

Jse the trigonometric identity

Use the trigonometric identity

$$1 + \tan^2(u) = \sec^2(u).$$

the trigonometric identity

$$1 + \tan^2(u) = \sec^2(u).$$

the trigonometric identity
$$1 + \tan^2(u) = \sec^2(u).$$

the trigonometric identity
+
$$tan^2(u) = sec^2(u)$$
.

$$\therefore dx = \operatorname{a} \sec^2(u) du .$$
$$\cdot = \frac{1}{a^2 + a^2 \tan^2(u)} = \frac{1}{a^2} \cdot \frac{1}{1 + \tan^2(u)}.$$

Core